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Abstract 

RC4 is a cryptographic algorithm used in securing communications. In our work, we analyse the 

security of its Key Scheduling Algorithm (KSA), a component that initialises the internal state of 

the cipher using a secret key, by taking on the role of an attacker and reverse-engineering this 

KSA. Our approach is to model the KSA as an Integer Quadratic Programming (IQP) problem, to 

leverage known solvers for IQP to recover the secret key from the output of the KSA. Our main 

contributions include (1) expressing the KSA in mathematical expressions, and (2) linearising non-

linear operators such as AND (see Section 5.1.1), OR (see Section 5.1.2), Modulo (see Section 

5.2), multiplication of one binary and one non-binary variable (see Section 5.4),  which are integral 

when used with the linearised piecewise function (see Section 5.3) to take after the ‘swapping 

function’ (Lines 3b-3d in Section 2.2.2)  of KSA. By achieving these two goals, we successfully 

modelled KSA as an IQP problem, which allows for future deployment of efficient solvers such 

as CVXPY to solve complicated KSA instances. This work provides a structured method for 

exploring potential weaknesses in RC4's KSA and advancing the understanding of cipher 

vulnerabilities. 

 

1 Introduction 

Cryptography relies on ciphers to encrypt and decrypt data, protecting private communications 

from prying eyes. Stream ciphers achieve this by producing a pseudo-random sequence of bits or 

words using a fixed length secret key. Rivest Cipher 4 (RC4) is a popular stream cipher which 

follows the design principle of extracting pseudo-random bytes from pseudo-random permutations 

[2]. RC4 was designed by Ron Rivest for RSA Data Security as a trade secret in 1987. Compared 

to block ciphers, stream ciphers like RC4 process data byte by byte, thus having lower memory, 

computational load and processing power requirements. This makes implementation of RC4 rather 

simple and efficient, as seen from a wide application in network protocols such as Secure Sockets 

Layer, Transport Layer Security, Wired Equivalent Privacy, Wi-Fi Protected Access and in 

Microsoft Windows [3].  

 

While there used to be a wide commercial usage of RC4, there have been other attacks developed 

against it [4], showing the statistical weaknesses that can be exploited to computationally 

distinguish the keystream of RC4 from a truly random sequence of bytes with a considerable 

probability of success [2]. However, these attacks stop short of retrieving the key which would be 



 

much more valuable to an attacker. Further, RC4 is still commonly used in applications such as 

WEP and Microsoft Kerberos.  

Thus, we believe it is still relevant to demonstrate RC4’s insecurity via new forms of mathematical 

analysis. In our work, we perform a ‘known plaintext attack’ of the RC4 cipher using Integer 

Quadratic Programming (IQP). In particular, we model the Key-Scheduling Algorithm (KSA), one 

of the two algorithms making up RC4, using Integer Quadratic Programming (IQP) to derive the 

key. IQP problems are optimisation problems where all variables take on integer values, with a 

quadratic objective function restricted by a list of linear constraints. The quadratic objective 

function is to be maximised or minimised depending on the problem. 

Our contributions can be distilled to the following:  

We compiled and devised linearisation techniques for five KSA operators. We believe that 

these linearisation techniques are applicable beyond the security analysis of RC4 since these 

operators are commonplace in other cryptographic algorithms. The operators addressed are: AND 

(see Section 5.1.1), OR (see Section 5.1.2), Modulo (see Section 5.2), a class of piecewise 

functions (see Section 5.3) and multiplication of binary and non-binary variables (see Section 5.4). 

In doing this, we built on and extended known techniques for the former three operators with novel 

insights and developed the latter two completely from scratch using subtle tricks to eliminate 

product terms.  

We consolidate these techniques to model RC4’s KSA. We then show that these five techniques 

are sufficient to model the entire KSA as an IQP problem. This is significant because efficient 

solvers such as CVXPY can be deployed to solve convex Quadratic Programming problems. We 

successfully modelled KSA into a convex IQP problem, and as such, solvers can be deployed in 

the future to solve complicated KSA problems.  

 

2 Background  

2.1 Integer Quadratic Programming (IQP)  

Integer Quadratic Programming problems are optimisation problems where all variables take on 

integer values, with a quadratic objective function restricted by a list of linear constraints. The 

quadratic objective function is minimised or maximised depending on the nature of the problem. 

In our work, we first derived a mathematical expression for the KSA, before linearising all non-

linear operators such that KSA is modelled into a convex IQP problem which can be solved using 

existing efficient Quadratic Programming solvers such as CVXPY.  

We define the IQP problem to have the following inputs and output: 

2.1.1 Inputs 

(A) Objective function 

The objective function takes the following form: 𝑓(𝑥0, . . . , 𝑥𝑛−1)  =  ∑ 𝑎𝑖,𝑗𝑥𝑖𝑥𝑗 + 𝑏𝑖𝑥𝑖 + 𝑐𝑛−1
𝑖,𝑗=0  

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑎𝑖,𝑗  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓𝑥𝑖𝑥𝑗  

𝑏𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑖 



 

 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑥0, 𝑥1, 𝑥2 … , 𝑥𝑛−1 𝑎𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑡𝑎𝑘𝑒 𝑜𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 

 

The objective function is being optimised (i.e. maximised or minimised, depending on the nature 

of the problem). 

(B) Constraints 

All constraints take the following forms:∑ 𝑑𝑖,𝑘𝑥𝑖 + 𝑒𝑛−1
𝑖,𝑗=0 ≤ 0 

𝑑𝑖,𝑘 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓𝑥𝑖 

e 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2.1.2 Output 

The output takes the form (𝑡0, . . . , 𝑡𝑛−1), where (𝑡0, . . . , 𝑡𝑛−1) are the values of the variables 

(𝑥0, . . . , 𝑥𝑛−1) when the objective function is optimised and all constraints are satisfied.   

 

2.2 Key-Scheduling Algorithm (KSA) 

2.2.1 Notational Convention 

In Section 2.2.2, the pseudocode of KSA is presented and these two notations will be used 

throughout.  

1. All variables and constants introduced in the FOR loop in KSA will take the following 

form: 

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡𝑢𝑝𝑙𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙𝑜𝑜𝑝 𝑛𝑢𝑚𝑏𝑒𝑟
𝑙𝑜𝑜𝑝 𝑛𝑢𝑚𝑏𝑒𝑟 𝑤ℎ𝑒𝑟𝑒 𝑡𝑒𝑟𝑚 𝑖𝑠 𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑

 

2. All tuples in the KSA will have the elements <n>, where <n> is the 8-bit big endian 

representation of n. It is a string. 

2.2.2 Pseudocode 

Key Scheduling Algorithm(n,k)  

1) 𝑗0← 0 

Here, 𝑗0 is assigned the value of 0 

Let state, s be a tuple of bytes of length 𝑛2 + 𝑛, where n is an integer between 1 and 256 

2) (<𝑠0
0>,<𝑠1

0>, ..., <𝑠𝑛−1
0 >)←(<0>,<1>,...,<n-1>)  

Here, 𝑠0
0 ← 0, 𝑠1

0 ← 1,…, 𝑠𝑛−1
0 ← 𝑛 − 1 

Let key, k be a tuple of bytes of length n. (k is made up of a key material tuple of length l repeated 

to match the length of the state, 𝑙 ≤ 𝑛 ) 

3) For i = 0, …, n-1 

Let the loop number for the For Loop in the Key Scheduling Algorithm be i+1 

a) 𝑗𝑖+1← (𝑗𝑖+ 𝑠𝑖
𝑖 + 𝑘𝑖) mod n 

b) 𝑠0
𝑖+1, 𝑠1

𝑖+1, 𝑠2
𝑖+1, … , 𝑠𝑛−1

𝑖+1 ← 𝑠0
𝑖 , 𝑠1

𝑖 , 𝑠2
𝑖 , … , 𝑠𝑛−1

𝑖  

c) 𝑠𝑖
𝑖+1 ← 𝑠

𝑗𝑖+1
𝑖  

d) 𝑠
𝑗𝑖+1
𝑖+1 ← 𝑠𝑖

𝑖 



 

In lines 3b-3d, each s variable introduced in the new loop is assigned to the variable introduced 

in the previous loop with the same subscript. Exception occurs where subscript is i or 

𝑗𝑖+1.When the subscript of the variable introduced in the new loop is i, it will be assigned the 

value of the variable introduced in the previous loop with subscript 𝑗𝑖+1 and vice versa.  

4) Return s 

3 Overview of Expressing KSA as a IQP problem 

3.1 Intuition  

To prove the insecurity of the RC4 cipher, we use IQP to perform a “known plaintext attack” to 

recover the key. In this case, we are deriving the key used when the initial and final state of KSA 

is known. The initial state is standard while the final state is given. We will call the output of KSA 

derived by the solver the derived final state, s. The objective function is being set such that it is 

minimized when each byte of the derived final state, s, is equal to the corresponding byte of the 

final state, fs, given to the solver. The solver would then be able to output the accurate key when 

the objective function is minimised, and all constraints are fulfilled. 

 

3.2 Inputs 

(A) Objective Function: ∑ (𝑓𝑠𝑚 − 𝑠𝑚
𝑛 )2𝑛−1

𝑚=0 = (𝑓𝑠0 − 𝑠0
𝑛)2+(𝑓𝑠1 − 𝑠1

𝑛)2 + ⋯ + (𝑓𝑠𝑛−1 −

𝑠𝑛−1
𝑛 )2 

The objective function is minimised.  

Since the objective function is made up of square terms only, it is minimised when it is equal to 0. 

That occurs when each of the square terms are 0 which is when the difference between each byte 

of fs and the corresponding byte of s is 0.  

(B) Constraints:  

The KSA. The challenge lies in that solvers for IQP problems do not accept KSA pseudocode as 

constraints. This is because the Pseudocode are not valid mathematical equations, and they are 

nonlinear. Hence, we find methods to convert the KSA pseudocode into a set of linear constraints. 

To get the linear constraints, we would first express KSA as a set of equations (Section 4). Then, 

we find techniques to replace nonlinear mathematical operators used in the equations with linear 

constraints. (Section 5). Lastly, we apply techniques to the set of equations. (Section 10.3). 

 

3.3 Output 

Secret key, k = (< 𝑘0 >  ,<𝑘1 >, …., <𝑘𝑛−1 >) 

 

4 Expressing KSA as a set of equations. 

Line of 

Pseudocode 

Equations 

1 𝑗0 = 0 

2 

 
 (<𝑠0

0>,<𝑠1
0>, ..., <𝑠𝑛−1

0 >) = (<0>,<1>,...,<n-1>) 

3a For i = 0, …, n-1 



 

              𝑗𝑖+1 =(𝑗𝑖+ 𝑠𝑖
𝑖 +𝑘𝑖) mod n 

mod is nonlinear. To linearise, see section 5.2 

3b,3c,3d 

 

For lines 3b-3d, 

we cannot 

simply replace 

‘←’ with ‘=’ as 

1. The solver is 

unable to solve 

when there are 

variables in the 

subscript of the 

terms. 

For example, 

𝑠𝑖
𝑖+1 = 𝑠

𝑗𝑖+1
𝑖

= 𝑠
(𝑗𝑖+ 𝑠𝑖

𝑖 + 𝑘𝑖) mod n 

𝑖  

Here, the 

variable 𝑘𝑖 is in 

the subscript.  

 

2.The 

mathematical 

expressions 

would be non-

valid. We cannot 

assign two 

different values 

to the same 

variable. 

For example,  

If 𝑖 =
0 and 𝑗𝑖+1 = 1, 

𝑠0
1 = 𝑠0

0
 and 𝑠0

1 =
𝑠1

0
 

 

 

𝐹𝑜𝑟 𝛽 = 0, … , 𝑛 − 1 

𝑠𝛽
𝑖+1 = ∑ 𝑎𝛼,𝛽

𝑖+1𝑠𝛼
𝑖

𝑛−1

𝛼=0

= 𝑎0,𝛽
𝑖+1𝑠0

𝑖 + 𝑎1,𝛽
𝑖+1𝑠1

𝑖 + 𝑎2,𝛽
𝑖+1𝑠2

𝑖 + … + 𝑎𝑛−1,𝛽
𝑖+1 𝑠𝑛−1

𝑖  

𝑤ℎ𝑒𝑟𝑒 𝑎𝛼,𝛽
𝑖+1 𝑎𝑟𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠    

𝑎𝛼,𝛽
𝑖+1𝑠𝛼

𝑖  is nonlinear. To linearise, see section 5.4 

 

 If any one of the following criteria are met, 𝑎𝛼,𝛽
𝑖+1 =1, else  𝑎𝛼,𝛽

𝑖+1 =0 

1.When 𝛼 = 𝑖 𝑎𝑛𝑑 𝛽 = 𝑗𝑖+1 

2.When 𝛼 = 𝑗𝑖+1 𝑎𝑛𝑑 𝛽 = 𝑖 
3.When 𝛼 = 𝛽, 𝛼 ≠ 𝑖 𝑎𝑛𝑑 𝛼 ≠ 𝑗𝑖+1  
 

Let 𝑢𝛼,𝛽,1
𝑖+1 indicate if criteria 1 is being fulfilled.  If criteria 1 is being fulfilled, 

𝑢𝛼,𝛽,1
𝑖+1 = 1  else, 𝑢𝛼,𝛽,1

𝑖+1 = 0  Variables 𝑢𝛼,𝛽,2
𝑖+1  and 𝑢𝛼,𝛽,3

𝑖+1  work the same way 

for criteria 2 and 3.  

Thus, we can express 𝑎𝛼,𝛽
𝑖+1 as: 𝑎𝛼,𝛽

𝑖+1 = 𝑢𝛼,𝛽,1
𝑖+1 ∨ 𝑢𝛼,𝛽,2

𝑖+1 ∨ 𝑢𝛼,𝛽,3
𝑖+1  

∨ is nonlinear. To linearise, see section 5.1.2 

 

From our criteria above, we can form the following sub criteria:  

1. 𝛼 = 𝑖  2. 𝛽 = 𝑗𝑖+1 3. 𝛼 = 𝑗𝑖+1 4. 𝛽 = 𝑖 5. 𝛼 = 𝛽 6. 𝛼 ≠ 𝑖 7. 𝛼 ≠ 𝑗𝑖+1 

 

Let 𝑣𝛼,𝛽,1
𝑖+1  indicate if sub criteria 1 is fulfilled.  

𝑣𝛼,𝛽,1
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛼 = 𝑖,
0 𝑤ℎ𝑒𝑛 𝛼 ≠ 𝑖

 

Variables 𝑢𝛼,𝛽,2
𝑖+1  , 𝑢𝛼,𝛽,3

𝑖+1 , 𝑣𝛼,𝛽,4
𝑖+1  and 𝑣𝛼,𝛽,5

𝑖+1  work the same way for criteria 2-

5.  

Piecewise functions of this form are nonlinear. To linearise, see Section 5.3 

Thus, 𝑢𝛼,𝛽,0
𝑖+1  , 𝑢𝛼,𝛽,1

𝑖+1  , 𝑢𝛼,𝛽,2
𝑖+1  can be expressed as 

 

𝑢𝛼,𝛽,1
𝑖+1 = 𝑣𝛼,𝛽,1

𝑖+1 ∧ 𝑣𝛼,𝛽,2
𝑖+1  

𝑢𝛼,𝛽,2
𝑖+1 = 𝑣𝛼,𝛽,3

𝑖+1 ∧ 𝑣𝛼,𝛽,4
𝑖+1  

𝑢𝛼,𝛽,3
𝑖+1 = 𝑣𝛼,𝛽,5

𝑖+1 ∧ (1 − 𝑣𝛼,𝛽,1
𝑖+1 ) ∧ (1 − 𝑣𝛼,𝛽,3

𝑖+1 ) 

∧ is nonlinear. To linearise, see section 5.1.1 

Figure 1: Table showing each line of KSA pseudo code expressed as equations. 

A full expression of KSA using a set of equations with all piecewise functions written out and with 

a more detailed explanation can be found in Section 10.3. 

 

5 Linearising Operators Using Constraints 

We will now be attempting to express Bitwise Operators AND and OR, Modulo, RC4 Piecewise 

Function and the multiplication of a binary and non-binary variable using linear constraints. We 



 

do this by defining the general form of how each mathematical operator is used before deriving 

the linear constraints based on this general form. The derivation of linear constraints is written out 

in detail for Bitwise And, Modulo and the RC4 Piecewise Function. The derivation of linear 

constraints for Bitwise OR and the multiplication of a binary and nonbinary variable uses a similar 

method to Bitwise AND. Thus, it can be found in the annex instead.  

5.1 Bitwise Operators 

Section 5.1.1 and 5.1.2 shows how we express bitwise operators AND and OR as linear constraints. 

As can been seen from Section 4, Bitwise exclusive OR is not needed in KSA equations. As such, 

the linear constraints used to express bitwise exclusive OR can be found in the annex instead.  

5.1.1 Bitwise AND (∧) 

The mathematical expression for bitwise operator AND where 𝑧 = 𝑥  ∧  𝑦, given 𝑥, 𝑦 = 0 𝑜𝑟 1, is  

𝑧 = 𝑥𝑦 which is nonlinear. We can use the following method to find a set of linear constraints to 

force 𝑧 to be equal to 𝑥 ∧ 𝑦, given that 𝑥, 𝑦 = 0 𝑜𝑟 1. 

 

First, we bound the values of 𝑧 to include only binary values with the constraints 0 ≤ 𝑧 ≤

1 and 𝑧 ∈ ℤ . There are now 8 possible sets of values 𝑥, 𝑦 and 𝑧 can take, which are represented 

as points A, B, C, D, E, F, G and H on the graph shown below. However, given that 𝑥  ∧  𝑦  =  𝑧 , 

there are only 4 possible sets of values 𝑥, 𝑦 and 𝑧 that satisfy 𝑥, 𝑦, 𝑧. They are points A(0,0,0), 

B(0,1,0), C(1,0,0) and D(1,1,1). 

 
Figure 2.1 3D Graph showing points A, B, C, D, E, F, G and H 

We now need to find linear constraints that can bound points A, B, C and D but not the 

remaining points: E(0,0,1), F(0,1,1), G(1,0,1) and H(1,1,0). To avoid points E (0,0,1), F(0,1,1) 

and G(1,0,1), we can use the planes 𝑧  =  𝑥 and 𝑧  =  𝑦 as upper bounds. Hence, we set the 

constraints:   

𝑧  ≤  𝑦  

𝑧  ≤  𝑥  

Then, to avoid point H (1,1,0) we can use the plane 𝑧  = 𝑥 + 𝑦  − 1  as a lower bound using the 

constraint: 

𝑧  ≥ 𝑥 + 𝑦  − 1   



 

 
 

Figure 2.2 Different angles of the 3D Graph showing points A, B, C, D, E, F, G and H as well as planes 𝑧 = 𝑥, 𝑧 = 𝑦 and 𝑧 =
𝑥 + 𝑦 − 1 

As such, we can see how the following set of constraints forces 𝑧 to be equal to 𝑥  ∧  𝑦. 

𝑧  ≤ 𝑥  

𝑧  ≤ 𝑦  

𝑧  ≥ 𝑥 + 𝑦  − 1  

0 ≤ 𝑧 ≤ 1  

𝑧 ∈ ℤ 

5.1.2 Bitwise OR (∨) 

Mathematically, given that 𝑥, 𝑦 = 0 𝑜𝑟 1 we can express 𝑧  =  𝑥  ∨  𝑦 as 𝑧 = 𝑥 + 𝑦 − 𝑥𝑦. 

We can apply a similar method to derive the following set of constraints to force the value of 𝑧 to 

be equal to 𝑥  ∨  𝑦, given 𝑥, 𝑦 = 0 𝑜𝑟 1. 

𝑧 ≥ 𝑥  

𝑧 ≥ 𝑦  

𝑧 ≤ 𝑥 + 𝑦  

0 ≤ 𝑧 ≤ 1  

𝑧 ∈ ℤ 

The full derivation of the above equations can be found in Section 10.1.1 

 

5.2 Modulo 

The modulo function, where 𝑎  =  𝑏 𝑚𝑜𝑑 𝑛  , 𝑎 is the remainder of the division 
𝑏

𝑛
. Another way to 

derive this remainder would be to subtract the highest possible multiple of n. This method can be 

expressed using the following linear equation and inequality: 

𝑎  =  𝑏  −  𝑥𝑛  

0 ≤ 𝑎 ≤ 𝑛 − 1 

𝑥 ∈ ℤ 

 



 

5.3 RC4 Piecewise Function 

The specific general form of piecewise function we use to determine value of variable 𝑣𝛼,𝛽,𝛾
𝑖+1  is 

following: 

𝑣 = {
1 𝑤ℎ𝑒𝑛 𝑥 = 𝑦,
0 𝑤ℎ𝑒𝑛 𝑥 ≠ 𝑦

 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑥 ≤ 𝑔, 0 ≤ 𝑦 ≤ 𝑔 𝑎𝑛𝑑 𝑥, 𝑦 ∈ ℤ 

Note: In our KSA equations, 𝑔 = 𝑛 − 1 as 𝛼, 𝛽, 𝑖 𝑎𝑛𝑑 𝑗𝑖+1 are integers between 0 and 𝑛 − 1.  

Since 0 ≤ 𝑥 and 0 ≤ 𝑦, calculating if 𝑥 = 𝑦 is the same as calculating if 𝑥 − 𝑦 = 0. Since 0 ≤

𝑥 ≤ 𝑔 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝑔, the greatest possible difference between 𝑥 and 𝑦 is 𝑔. Hence, we can then 

say that −𝑔 ≤ 𝑥 − 𝑦 ≤  𝑔. Thus, we can rewrite the general form of the piecewise function as: 

𝑣 = {
1 𝑤ℎ𝑒𝑛 𝑥 − 𝑦 = 0
0 𝑤ℎ𝑒𝑛 𝑥 − 𝑦 ≠ 0

 

𝑤ℎ𝑒𝑟𝑒 − 𝑔 ≤ 𝑥 − 𝑦 ≤ 𝑔 𝑎𝑛𝑑 𝑥, 𝑦 ∈ ℤ 

To find the linear constraints. Let us plot a point for all values of a for each value of 𝑥 − 𝑦 where 

𝑔 = 10. 

 
Figure 3.1 Graph of 𝑣 against (𝑥 − 𝑦) 

All points plotted can be bounded by lines from AB, BC, and CA.  

The following points A, B and C expressed in terms of g are A (0,1), B(−𝑔,0) and C( 𝑔,0). 

We can use three constraints to force 𝑎 to fulfill the piecewise function above. The first inequality 

ensures that a falls under line AB, second under line AC and the third above line BC. The 

inequalities are as follows:  

𝑣 ≤ 1 −
𝑥 − 𝑦

𝑔
 

𝑣 ≤ 1 +
𝑥 + 𝑦

𝑔
 

𝑣 ≥ 0 

𝑣 ∈ ℤ 

To test our constraints, let 𝑥 − 𝑦 = 3. 

Using our piecewise functions, since 𝑥 ≠ 𝑦, 𝑣 = 0 

Using our constraints, 

𝑣 ≤ 1 −
3

10
 

𝑣 

(𝑥 − 𝑦) 



 

𝑣 ≤ 1 +
3

10
 

𝑣 ≥ 0 

𝑣 ∈ ℤ 

Thus, 𝑣 = 0 

Subbing the values of (𝑥 − 𝑦) into the piecewise functions and linear constraints give the same 

values of 𝑣 for all possible values of (𝑥 − 𝑦) except when (𝑥 − 𝑦) = 0 

When (𝑥 − 𝑦) = 0, 𝑣 is bounded by the following linear constraints: 

𝑣 ≤ 1 −
0

10
= 1 

𝑣 ≤ 1 +
0

10
= 1 

𝑣 ≥ 0 

𝑣 ∈ ℤ 

In this case, 𝑣 can take on the value of 0 or 1.  

For our report, we will refer to any case where a variable can take on more than one variable as an 

ambiguous case. When writing our KSA as a set of linear constraints, to force the variables 𝑣𝛼,𝛽,𝛾
𝑖+1  

to equal 1 when there is an ambiguous case, we add in the following constraint: ∑ 𝑎𝛼,𝛽
𝑖+1𝑛−1

𝑎=0 = 1 

This implies that only one 𝑎𝛼,𝛽
𝑖+1 in the equation:𝑠𝛽

𝑖+1 = ∑ 𝑎𝛼,𝛽
𝑖+1𝑠𝛼

𝑖𝑛−1
𝛼=0 = 𝑎0,𝛽

𝑖+1𝑠0
𝑖 + 𝑎1,𝛽

𝑖+1𝑠1
𝑖 +

𝑎2,𝛽
𝑖+1𝑠2

𝑖 + … + 𝑎𝑛−1,𝛽
𝑖+1 𝑠𝑛−1

𝑖  will be 1 and the rest will be 0.  

Before adding the constraint, when at least one of the following variables :  

𝑣𝛼,𝛽,1
𝑖+1 , 𝑣𝛼,𝛽,2

𝑖+1 , 𝑣𝛼,𝛽,3
𝑖+1 , 𝑣𝛼,𝛽,4

𝑖+1  𝑎𝑛𝑑 𝑣𝛼,𝛽,5
𝑖+1  are ambiguous, then, at least one of the following variables: 

𝑢𝛼,𝛽,1
𝑖+1 , 𝑢𝛼,𝛽,2

𝑖+1  𝑎𝑛𝑑 𝑢𝛼,𝛽,3
𝑖+1 will be ambiguous too. Hence, 𝑎𝛼,𝛽

𝑖+1 = 0 𝑜𝑟 1. However, with the 

constraint above, 𝑎𝛼,𝛽
𝑖+1 is forced to be 1. This is because for the same 𝛽, there is only one set of the 

following variables:  𝑣𝛼,𝛽,1
𝑖+1 , 𝑣𝛼,𝛽,2

𝑖+1 , 𝑣𝛼,𝛽,3
𝑖+1 , 𝑣𝛼,𝛽,4

𝑖+1  𝑎𝑛𝑑 𝑣𝛼,𝛽,5
𝑖+1  that has at least 1 ambiguous variables. 

 

5.4 Multiplication of a binary and a non-binary variable 

𝐿𝑒𝑡 𝑥 𝑏𝑒 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝐿𝑒𝑡 𝑦 𝑏𝑒 𝑎 𝑛𝑜𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤ℎ𝑒𝑟𝑒 𝑦 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝑐 

Note: In our KSA equations, 𝑐 = 𝑛 − 1 as 𝑠𝛼
𝑖  is an integer between 0 and 𝑛 − 1. 

Using a similar graphing method shown in Section 5.1.1, we can express 𝑧 = 𝑥𝑦 using the 

following linear constraints:  

𝑧 ≤ 𝑦 

𝑧 ≤ 𝑐𝑥 

𝑧 ≥ −𝑐 + 𝑦 + 𝑐𝑥 

𝑧 ≥ 0 

𝑧 ∈ ℤ 

The full derivation of the above equations can be found in Section 10.2 

 



 

6 Expressing KSA as a set of linear constraints 

We have expressed all nonlinear mathematical operators as linear constraints. We can implement 

them in our set of equations that is used to express KSA. (Section 4) constraints that restrict the 

variables to be integers, e.g. z ∈ ℤ, do not take the form of a linear constraint defined in Section 

2.1.1. However, all variables can only be integers in an Integer Quadratic Problem. Thus, we can 

omit those constraints. After all nonlinear mathematical operators are replaced, we now have the 

general form of KSA fully represented by linear constraints. This can be found in Section 10.3. In 

general form and omitting constraints that restrict the variables to be integers, the nonlinear line 3 

are replaced by 3 linear constraints. The nonlinear lines 3b, 3c and 3d are replaced by 45 constraints 

in total. 

 

7 Conclusion and Future Work 

In this work, we managed to successfully model KSA of the RC4 cipher into a convex Integer 

Quadratic Programming problem, by expressing the algorithm as mathematical expressions before 

linearising the constituting operators. The main challenge was to express the lines 3b-3d of 

pseudocode where the arrow could not be replaced by an equality sign as well as to linearise the 

mathematical operators, particularly for the RC4 piecewise function and multiplication of a binary 

and non-binary variable.  

As such, we propose for the following scope for future work: 

1. Deploying IQP solvers to verify the feasibility of solving KSA problems using the IQP 

model devised in the paper. 

2. Model the Pseudo-Random Generated Algorithm (the other Algorithm used in the RC4 

Cipher) using IQP and similar linearisation techniques to obtain a full model for RC4 

cipher. 

3. The piecewise function is tailored to the usage in the KSA of the RC4 cipher and has 

to be implemented together with the other constraints in order to accurately model 

after the KSA. We aim to find methods such that we can express the piecewise function 
as linear constraints outside the RC4 cipher.  

8 Acknowledgements 

Firstly, we would like to express gratitude towards DSO National Laboratory for offering the 

Young Defence Scientists Programme, consisting of the World of Science programme and 

Research@YDSP. We are truly grateful to be given the opportunity to participate in WoS, and 

eventually being taken in as interns as part of R@YDSP under our mentors, Ruth and Zhan Feng. 

WoS and R@YDSP internship has made us developed a keen interest towards Cryptography and 

the application of Mathematics in information technologies and defence. We would also like to 

specially mention our fellow interns and the co-mentors from INFO-IS at SP20, for their support 

and company throughout this research.  

 



 

9 References  

[1] Erwin Kalvelagen. 2018. Linearizing multiple XOR operations. 

https://yetanothermathprogrammingconsultant.blogspot.com/2018/12/linearizing-multiple-xor-

operations.html  

 

[2]  Jindal, P., & Singh, B. 2015. RC4 Encryption-A Literature Survey. Procedia Computer 

Science 46, 697–705. https://www.sciencedirect.com/science/article/pii/S1877050915001933 

 

[3]  Sarkar, S., Sen Gupta, S., Paul, G., & Maitra, S. 2014. Proving TLS-attack related open 

biases of RC4. Designs, Codes and Cryptography, 77(1), 231–253. 

https://dl.acm.org/doi/10.1007/s10623-014-0003-0 

 

[4]  Sen Gupta, S., Maitra, S., Paul, G. et al. 2014. (Non-)Random Sequences from (Non-) 

Random Permutations—Analysis of RC4 Stream Cipher. Journal of Cryptology 27, 67–108. 

https://link.springer.com/article/10.1007/s00145-012-9138-1 

 

 

10 Annex  

10.1 BITWISE OPERATORS 

10.1.1 Bitwise OR 

Mathematically, given that 𝑥, 𝑦 = 0 𝑜𝑟 1 we can express 𝑧  =  𝑥  ∨  𝑦 as 𝑧 = 𝑥 + 𝑦 − 𝑥𝑦. 

We can apply a similar method to derive the following set of constraints to force the value of 𝑧 to 

be equal to 𝑥  ∨  𝑦, given 𝑥, 𝑦 = 0 𝑜𝑟 1. 

Similar to the derivation of Bitwise AND in Section 5.1.1, we bound the values of 𝑧 to include 

only binary values with the constraints 0 ≤ 𝑧 ≤ 1 and 𝑧 ∈ ℤ . There are now 8 possible sets of 

values 𝑥, 𝑦 and 𝑧 can take, which are represented as points A, B, C, D, E, F, G and H on the graph 

shown below. However, given that 𝑥  ∧  𝑦  =  𝑧 , there are only 4 possible sets of values 𝑥, 𝑦 and 

𝑧 that satisfy 𝑥, 𝑦, 𝑧. They are points A(0,0,0), B(0,1,1), C(1,0,1) and D(1,1,1). 



 

 
Figure 4: 3D graph showing the points A,B,C,D,E,F,G,H and planes 𝑧 = 𝑥 , 𝑧 = y, 𝑧 = 𝑥 + 𝑦 

 

From the above projection, we can see how the planes 𝑧 = 𝑥 and 𝑧 = 𝑦 instead act as lower 

bounds, to exclude undesired points F(0,1,0), G(1,0,0) and H(1,1,0). As such we can derive the 

following inequalities: 

𝑧 ≥ 𝑦  

𝑧 ≥ 𝑥  

 

To exclude E(0,0,1), we can then use 𝑧 = 𝑥 + 𝑦 as an upper bound, deriving the inequality:  

𝑧 ≤ 𝑥 + 𝑦  

 

As such we can derive the following set of constraints such that 𝑧 = 𝑥  ∨  𝑦,  given 𝑥, 𝑦 = 0 𝑜𝑟 1. 

𝑧 ≥ 𝑥  

𝑧 ≥ 𝑦  

𝑧 ≤ 𝑥 + 𝑦  

0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1  

𝑧 ∈ ℤ 

10.1.2 Bitwise Exclusive OR 

This derivation of linear constraints for Bitwise Exclusive OR is referenced from [1]. 

Mathematically, given that 𝑥, 𝑦 = 0 𝑜𝑟 1 , we can express 𝑧  =  𝑥  ⊕  𝑦 as 𝑧 = 𝑥 + 𝑦 − 2𝑥𝑦. 

We can observe that:  

𝑥  𝑦 𝑥 + 𝑦 𝑧 



 

0 0 0 0 

0 1 1 1 

1 0 1 1 

1 1 2 0 

Case 1  

 If 𝑥 + 𝑦 is 0 or 1, then 𝑧 should be forced to be 𝑥 + 𝑦 by constraints   

Case 2 

 If 𝑥 + 𝑦 is 2, then 𝑧 should be forced to be 𝑥 + 𝑦 − 2 by constraints  

 

As such we can derive the following set of constraints such that 𝑧  =  𝑥  ⊕  𝑦 , given  𝑥, 𝑦 =

0 𝑜𝑟 1. 

 

𝑧 = 𝑥 + 𝑦 − 2𝑞 

𝑥 − 𝑦 − 1 ≤ 𝑞 ≤ 𝑥 + 𝑦 

0 ≤ 𝑧, 𝑞 ≤ 1  

𝑧, 𝑞 ∈ ℤ 

 

10.2 Linearising the multiplication of one binary and one non-binary variable 

𝐿𝑒𝑡 𝑥 𝑏𝑒 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝐿𝑒𝑡 𝑦 𝑏𝑒 𝑎 𝑛𝑜𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤ℎ𝑒𝑟𝑒 𝑦 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝑐 

We can use the following method to force 𝑧 to be to be equal to 𝑥𝑦. 

 

First, we plot a simple graph. To do so, let us take 𝑐 = 3 

The sets of values that x, y and z can hold is represented by points A, B, C, D, E, F, G and H on 

the graph below.  

 



 

 
Figure 5: 3D graph with points A,B,C,D,E,F,G,H 

We can effectively bound all points using these 4 planes. 

 
Figure 6: 3D graph with points A, B, C, D, E, F, G, H and 4 planes 

The table below shows how these 4 planes are derived. 

Plane Analysis Constraint 

derived 

Equation of the plane 1: 𝑧 = 0 Points wanted 

lie above or on 

the plane.  

 

𝑧 ≥ 0 



 

 
Figure 7: Plane 1 

 

Points below 

the plane (e.g. 

Point 

𝐼(0,1, −1)) 

are eliminated. 

 Equation of plane 2: 𝑧 = 𝑦 

 

Points wanted 

lie under or on 

the plane.  

 

 

Points above 

the plane (e.g. 

Point 

J(0, −1,0)) are 

eliminated.  

 

𝑧 ≤ 𝑦 

 

Equation of plane 3: 𝑧 = 3𝑥 

 

Points wanted 

lie under or on 

the plane.  

 

 

Points above 

the plane (e.g. 

Point 

K(1,4,4)) are 

eliminated.  

 

𝑧 ≤ 3𝑥 

 

Figure 8: Plane 2 



 

Figure 9: Plane 3 

 

Equation of plane 4: 𝑧 = −3 + 𝑦 + 3𝑥 

 
Figure 10: Plane 4 

Note: Vectors used to calculate equation of the plane are (
1
0
0

) 

and (
−1

𝑐 = 3
0

) 

Points wanted 

lie above or on 

the plane.  

 

 

Points under 

the plane (e.g. 

Point 

L(2,1,0)) are 

eliminated.  

 

 𝑧 ≥ −3 +
𝑦 + 3𝑥 

We can now express 𝑧 = 𝑥𝑦 using the following linear constraints:  

𝑧 ≤ 𝑦 

𝑧 ≤ 𝑐𝑥 

𝑧 ≥ −𝑐 + 𝑦 + 𝑐𝑥 

𝑧 ≥ 0 

𝑧 ∈ ℤ 

 

10.3 KSA represented by linear constraints 

The table shows how we linearise all operators in the nonlinear equations from Section 4, using 

the methods discussed Section 5 of the report. All variables are integers. 

Notation: 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒̃  𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑡𝑎𝑘𝑒𝑛 

Non-Linear Equations Linear Equations 

              𝑗𝑖+1 = (𝑗𝑖+ 𝑠𝑖
𝑖 + 𝑘𝑖) mod 𝑛 For i = 0, …, 3  

𝑗𝑖+1̃ = 𝑗𝑖 + 𝑠𝑖
𝑖 + 𝑘𝑖 

𝑗𝑖+1 = 𝑗𝑖+1̃ − 𝑛𝑏𝑖+1 

0 ≤ 𝑗𝑖+1 ≤ 𝑛 − 1 

𝐹𝑜𝑟 𝛽 = 𝑜, … , 𝑛 − 1 Let 𝑟𝛼,𝛽
𝑖+1 = 𝑎𝛼,𝛽

𝑖+1𝑠𝛼
𝑖  

So,  

𝐹𝑜𝑟 𝛽 = 𝑜0, … , 𝑛 − 1 



 

𝑠𝛽
𝑖+1 = ∑ 𝑎𝛼,𝛽

𝑖+1𝑠𝛼
𝑖

𝑛−1

𝛼=0

= 𝑎0,𝛽
𝑖+1𝑠0

𝑖 + 𝑎1,𝛽
𝑖+1𝑠1

𝑖 + 𝑎2,𝛽
𝑖+1𝑠2

𝑖

+ … + 𝑎𝑛−1,𝛽
𝑖+1 𝑠𝑛−1

𝑖  

𝑤ℎ𝑒𝑟𝑒 𝑎𝛼,𝛽
𝑖+1 𝑎𝑟𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠    

 

𝑠𝛽
𝑖+1 = ∑ 𝑟𝛼,𝛽

𝑖+1

𝑛−1

𝛼=0

= 𝑟0,𝛽
𝑖+1 + 𝑟1,𝛽

𝑖+1 + ⋯ + 𝑟𝑛−1,𝛽
𝑖+1  

𝑟𝛼,𝛽
𝑖+1 ≥ 0 

𝑟𝛼,𝛽
𝑖+1 ≤ (𝑛 − 1)𝑠𝛼

𝑖  

𝑟𝛼,𝛽
𝑖+1 ≤ 𝑠𝛼

𝑖  

𝑟𝛼,𝛽
𝑖+1 ≥ −(𝑛 − 1) + 𝑠𝛼

𝑖 + (𝑛 − 1)𝑎𝛼,𝛽
𝑖+1 

If any one of the following criteria are met, 𝑎𝛼,𝛽
𝑖+1 =1, else  𝑎𝛼,𝛽

𝑖+1 =0 

 

1.When 𝛼 = 𝑖 𝑎𝑛𝑑 𝛽 = 𝑗𝑖+1 

2.When 𝛼 = 𝑗𝑖+1 𝑎𝑛𝑑 𝛽 = 𝑖 
3.When 𝛼 = 𝛽, 𝛼 ≠ 𝑖 𝑎𝑛𝑑 𝛼 ≠ 𝑗𝑖+1  
 

Let 𝑢𝛼,𝛽,1
𝑖+1  , 𝑢𝛼,𝛽,2

𝑖+1  𝑎𝑛𝑑 𝑢𝛼,𝛽,3
𝑖+1  be variables that indicate if each of the criteria are being fulfilled: 

 

If criteria 1 is being fulfilled, 𝑢𝛼,𝛽,1
𝑖+1 = 1  else, 𝑢𝛼,𝛽,1

𝑖+1 = 0   

If criteria 2 is being fulfilled, 𝑢𝛼,𝛽,2
𝑖+1 = 1  else,  𝑢𝛼,𝛽,2

𝑖+1 = 0 

If criteria 3 is being fulfilled, 𝑢𝛼,𝛽,3
𝑖+1 = 1  else, 𝑢𝛼,𝛽,3

𝑖+1 = 0   

 

Thus, we can express 𝑎𝛼,𝛽
𝑖+1 as: 

𝑎𝛼,𝛽
𝑖+1 = 𝑢𝛼,𝛽,1

𝑖+1 ∨ 𝑢𝛼,𝛽,2
𝑖+1 ∨ 𝑢𝛼,𝛽,3

𝑖+1  𝐿𝑒𝑡 𝑧𝛼,𝛽
𝑖+1 = 𝑢𝛼,𝛽,1

𝑖+1 ∨ 𝑢𝛼,𝛽,2
𝑖+1  

Constraints to force 𝑧𝛼,𝛽
𝑖+1 = 𝑢𝛼,𝛽,1

𝑖+1 ∨ 𝑢𝛼,𝛽,2
𝑖+1  

𝑧𝛼,𝛽
𝑖+1 ≥ 𝑢𝛼,𝛽,1

𝑖+1  

𝑧𝛼,𝛽
𝑖+1 ≥ 𝑢𝛼,𝛽,2

𝑖+1  

𝑧𝛼,𝛽
𝑖+1 ≤ 𝑢𝛼,𝛽,1

𝑖+1 + 𝑢𝛼,𝛽,2
𝑖+1  

0 ≤ 𝑧𝛼,𝛽
𝑖+1 ≤ 1 

Constraints to force 𝑎𝛼,𝛽
𝑖+1 = 𝑧𝛼,𝛽

𝑖+1 ∨ 𝑢𝛼,𝛽,3
𝑖+1  

𝑎𝛼,𝛽
𝑖+1 ≥ 𝑧𝛼,𝛽

𝑖+1 

𝑎𝛼,𝛽
𝑖+1 ≥ 𝑢𝛼,𝛽,3

𝑖+1  

𝑎𝛼,𝛽
𝑖+1 ≤ 𝑧𝛼,𝛽

𝑖+1 + 𝑢𝛼,𝛽,3
𝑖+1  

0 ≤ 𝑎𝛼,𝛽
𝑖+1 ≤ 1 

From our criteria above, we can form the following sub criteria:  

1. 𝛼 = 𝑖  
2. 𝛽 = 𝑗𝑖+1 

3. 𝛼 = 𝑗𝑖+1  
4. 𝛽 = 𝑖 
5. 𝛼 = 𝛽 

6. 𝛼 ≠ 𝑖  
7. 𝛼 ≠ 𝑗𝑖+1 

 



 

Let 𝑣𝛼,𝛽,1
𝑖+1  , 𝑣𝛼,𝛽,2

𝑖+1 , 𝑣𝛼,𝛽,3
𝑖+1 , 𝑣𝛼,𝛽,4

𝑖+1 , 𝑣𝛼,𝛽,5
𝑖+1  be indicator variables that check if each of the sub 

criteria 1-5 are fulfilled.  

𝑣𝛼,𝛽,1
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛼 = 𝑖,
0 𝑤ℎ𝑒𝑛 𝛼 ≠ 𝑖

 

 

𝑣𝛼,𝛽,1
𝑖+1 ≤

1

(n − 1)
(𝛼 − 𝑖) + 1 

𝑣𝛼,𝛽,1
𝑖+1 ≤ −

1

(n − 1)
(𝛼 − 𝑖) + 1 

0 ≤ 𝑣𝛼,𝛽,1
𝑖+1  

𝑣𝛼,𝛽,2
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛽 = 𝑗𝑖+1 

0 𝑤ℎ𝑒𝑛 𝛽 ≠ 𝑗𝑖+1
 

 

𝑣𝛼,𝛽,2
𝑖+1 ≤

1

(n − 1)
(𝛽 − 𝑗𝑖+1)  + 1 

𝑣𝛼,𝛽,2
𝑖+1 ≤ −

1

(n − 1)
(𝛽 − 𝑗𝑖+1) + 1 

0 ≤ 𝑣𝛼,𝛽,2
𝑖+1  

𝑣𝛼,𝛽,3
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛼 = 𝑗𝑖+1

0 𝑤ℎ𝑒𝑛 𝛼 ≠ 𝑗𝑖+1
 

 

𝑣𝛼,𝛽,3
𝑖+1 ≤

1

(n − 1)
(𝛽 − 𝑖) + 1 

𝑣𝛼,𝛽,3
𝑖+1 ≤ −

1

(n − 1)
(𝛽 − 𝑖)  + 1 

0 ≤ 𝑣𝛼,𝛽,3
𝑖+1  

𝑣𝛼,𝛽,4
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛽 = 𝑖 
0 𝑤ℎ𝑒𝑛 𝛽 ≠ 𝑖

 

 

𝑣𝛼,𝛽,4
𝑖+1 ≤

1

(n − 1)
(𝛼 − 𝑗𝑖+1) + 1 

𝑣𝛼,𝛽,4
𝑖+1 ≤ −

1

4(n − 1)
(𝛼 − 𝑗𝑖+1)  + 1 

0 ≤ 𝑣𝛼,𝛽,4
𝑖+1  

𝑣𝛼,𝛽,5
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛼 = 𝛽 
0 𝑤ℎ𝑒𝑛 𝛼 ≠ 𝛽

 𝑣𝛼,𝛽,5
𝑖+1 ≤

1

(n − 1)
(𝛼 − 𝛽) + 1 

𝑣𝛼,𝛽,5
𝑖+1 ≤ −

1

(n − 1)
(𝛼 − 𝛽)  + 1 

0 ≤ 𝑣𝛼,𝛽,5
𝑖+1  

To check if sub criteria 6 and 7 are fulfilled, we can use bitwise NOT 𝑣𝛼,𝛽,0
𝑖+1  and bitwise NOT 

𝑣𝛼,𝛽,3
𝑖+1 respectively. 

1 − 𝑣𝛼,𝛽,1
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛼 ≠ 𝑖,
0 𝑤ℎ𝑒𝑛 𝛼 = 𝑖

 

 

1 − 𝑣𝛼,𝛽,3
𝑖+1 = {

1 𝑤ℎ𝑒𝑛 𝛼 ≠ 𝑗𝑖+1

0 𝑤ℎ𝑒𝑛 𝛼 = 𝑗𝑖+1
 

 

- To force the variables 𝑣𝛼,𝛽,𝛾
𝑖+1  to equal 1 when 

there is an ambiguous case, we add in the 

following constraint: 

∑ 𝑎𝛼,𝛽
𝑖+1

𝑛−1

𝑎=0

= 1 

Thus, 𝑢𝛼,𝛽,1
𝑖+1  , 𝑢𝛼,𝛽,2

𝑖+1  , 𝑢𝛼,𝛽,3
𝑖+1  can be expressed as 



 

𝑢𝛼,𝛽,1
𝑖+1 = 𝑣𝛼,𝛽,1

𝑖+1 ∧ 𝑣𝛼,𝛽,2
𝑖+1  

 

𝑢𝛼,𝛽,1
𝑖+1 ≤ 𝑣𝛼,𝛽,1

𝑖+1  

𝑢𝛼,𝛽,1
𝑖+1 ≤ 𝑣𝛼,𝛽,2

𝑖+1  

𝑢𝛼,𝛽,1
𝑖+1 ≥ 𝑣𝛼,𝛽,1

𝑖+1 + 𝑣𝛼,𝛽,2
𝑖+1 − 1 

0 ≤ 𝑢𝛼,𝛽,1
𝑖+1 ≤ 1 

𝑢𝛼,𝛽,2
𝑖+1 = 𝑣𝛼,𝛽,3

𝑖+1 ∧ 𝑣𝛼,𝛽,4
𝑖+1  

 

𝑢𝛼,𝛽,2
𝑖+1 ≤ 𝑣𝛼,𝛽,3

𝑖+1  

𝑢𝛼,𝛽,2
𝑖+1 ≤ 𝑣𝛼,𝛽,4

𝑖+1  

𝑢𝛼,𝛽,2
𝑖+1 ≥ 𝑣𝛼,𝛽,3

𝑖+1 + 𝑣𝛼,𝛽,4
𝑖+1 − 1 

0 ≤ 𝑢𝛼,𝛽,2
𝑖+1 ≤ 1 

𝑢𝛼,𝛽,3
𝑖+1 = 𝑣𝛼,𝛽,5

𝑖+1 ∧ (1 − 𝑣𝛼,𝛽,1
𝑖+1 ) ∧ (1 − 𝑣𝛼,𝛽,3

𝑖+1 ) 

 

Let 𝑤𝛼,𝛽
𝑖+1 = (1 − 𝑣𝛼,𝛽,1

𝑖+1 ) ∧ (1 − 𝑣𝛼,𝛽,3
𝑖+1 ) 

Constraints to force 𝑤𝛼,𝛽
𝑖+1 = (1 − 𝑣𝛼,𝛽,1

𝑖+1 ) ∧

(1 − 𝑣𝛼,𝛽,3
𝑖+1 ) 

 𝑤𝛼,𝛽
𝑖+1 ≤ (1 − 𝑣𝛼,𝛽,1

𝑖+1 ) 

 𝑤𝛼,𝛽
𝑖+1 ≤ (1 − 𝑣𝛼,𝛽,3

𝑖+1 ) 

 𝑤𝛼,𝛽
𝑖+1 ≥ (1 − 𝑣𝛼,𝛽,1

𝑖+1 ) + (1 − 𝑣𝛼,𝛽,3
𝑖+1 ) − 1 

0 ≤  𝑤𝛼,𝛽
𝑖+1 ≤ 1 

Constraints to force 𝑢𝛼,𝛽,3
𝑖+1 = 𝑣𝛼,𝛽,5

𝑖+1 ∧  𝑤𝛼,𝛽
𝑖+1 

𝑢𝛼,𝛽,3
𝑖+1 ≤ 𝑣𝛼,𝛽,5

𝑖+1  

𝑢𝛼,𝛽,3
𝑖+1 ≤  𝑤𝛼,𝛽

𝑖+1 

𝑢𝛼,𝛽,3
𝑖+1 ≥ 𝑣𝛼,𝛽,5

𝑖+1 +  𝑤𝛼,𝛽
𝑖+1 − 1 

0 ≤ 𝑢𝛼,𝛽,3
𝑖+1 ≤ 1 

Figure 11: KSA represented by linear constraints 

 

 

 


